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ON A CLASS OF POLYNOMIALS CONNECTED WITH THE KORTEWEG-DE VRIES EQUATION

M. Adler and J; Moser

In [1) special classes of solutions of the Korteweg-de Vries equation
o 1 o
(1.1) u_ = 3uu_ - Zu =X

were studied, in particular, all those u = u(x,t) which are rational func-
-~
tions of x for each value of t. It turns out that these solutions are

rational functions of t as well and of very special structure. 1In this

‘e

5 < paper we give a new construction of these solutions with emphasis on their
. algebraic properties.
To describe the family of rational solutions of (1.1), one does well

s to introduce the sequence of associated Korteweg-de Vries equation

(1.2) ug = Xu fee=n 1R e,
which are related by

i k 9x du

'

to the sequence of conservation laws
H = / P, (u,u',...)ax

associated with (1.1). These Xk can be recursively defined by

3, 8H
Ll e (?ai) )—Buﬁ
as was shown originally by Lenard,see [3]. For the notation used here we
refer to [6,1].
The above nonlinear differential operators commute, and so do the

flows e(tk Xk) generated by them. We ask for the manifold M of rational

functions invariant under all the flows e(tk Xk). It is one of the results
of [1] that M decomposes into denumerably many manifolds My of dimecnsions

d for d4d=1,2,... and, moreover, each Md is generated from the single

This work was partially sponsored by the National Science Foundation, Grants
MCS 74-03003-A-02, MCS 75-17385, and by the United States Army under
Contract No. DAAG29-75-C-0024.
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function

. d(d + 1)
X

by the flows e(Z thk) (see [1], Section 3, Theorem 2).

Ui ol St sl i . bt o o o M=

In this paper we want to give a representation of My in terms of a

class of polynomials Gd = ed(rl,rz,....td) depending on d variables.

These polynomials will be defined recursively in Section 2 and they allow

the representation of all u e My in the form

2
= gald
(1.3) ud(x) = Z(ax, log ed(rl + x,rz,...,rd)

and this representation is one to one, so that TyrTpre-esTgq can be viewed

as global coordinates on Md. The xk give rise to vector fields

[

k

on Md which are expressible in terms of the Tj, and in Section 5 we will

determine these T

x
to a group of birational transformations
*
T: = @.T. ¥+ . (5000 < : a. # 0
el R TR j y

gj being polynomials, without affecting the above representation.

*
the parameters Tj can be introduced so that

_ _29
b e
5 9T
k
i.e. that the solutions of u, = X, u are given by

* * * *
ud(x,Tz,...,Tk + t'Tk+1""'Td) .

*
In other words the T, can be identified with t-variable tk of

Moreover,

X

It turns out that the Tyre-2sTq can be subjected

k"

This

picture was developed already in [1]) but here this representation is made

more explicit through (1.3) and the construction of the polynomials

6

The representation (1.3) is analogue to that of Its and Matveev [4] for the

case of solutions of (1.1) having a fixed period in x and for which the

corresponding Hill's equation has only finitely many simple eigenvalues.
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It is conceivable that (1.3) could be obtained by a limit process from the
formula [4], but we did not succeed in this way.* Similarly one may
expect that (1.3) could be obtained as the limit of the N—soliton poten-
tials [8), but neither did we succeed in this way.

We mention that the solutions of the type (1.3) for the case d = 2

were considered by H. Moses [9].

The construction of the ek as well as the proof of the above statements
are based on a transformation of differential operators L= -D2+-u into each
other which is certainly not new (see [2,11,12]) and the so-called Miura trans-
formation (7] for which we give a natural derivation. This derivation is
based on the factorization

*

L=2AR1A; A=D-v
where u==v'+-v2. Similarly as in Lax' work [5], where one considers deforma-
tions of operators L in the equivalence class of operators of the form U_]LU
for unitary U, here we consider deformations of operators A in the equivalence
class of operators UlAUZ, where Ul’UZ are two unitary operators. If we apply
these ideas to formal differential operators we are lead to the modified
Korteweg-de Vries equation which by 11=v’-+v2 is transformed into (1.1). This
follows from the fact that any deformation of A of this kind gives rise to
an iso-spectral deformation of L. The ideas are explained in Section 3.

On the other hand if I,=A*A one gets a second differential operator
;=AA*= -D2+; by exchanging the role of A and A*. Moreover, L is also iso-
spectrally deformed under the above deformation. This gives rise to a Back lund
transformation of u==v'+v2 into G==—v'4-v21eaving the xj invariant. Applying
this transformation repcatedly we construct the sequence Ug of (1.3). This trans-
formation has also been employed in the construction of N-soliton solutions [11].

In [1] the functions uy € Md were described in terms of their poles

1 :
XyrXgreee X, N o= 3 d(d + 1), which have to satisfy the conditions

*
H. Mggean, via personal communication, informed us of his success in carrying
out this approach
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n

(1.4) I g -x)"2 =0 for k= 1,2,...0n .
j=1 4
ok

In contrast, here we give preference to the functions

n
6, = - %,
a i (x xJ)

J

which are constructed in Section 2. As a consequence of their properties
their roots satisfy (1.4) and all solutions of (1.4) can be so obtained.
Thus the Tl""'Td can be viewed as uniformizing variables for the
algebraic variety (1.4).

The second author wishes to express his thanks for the hospitality of
the University of Wisconsin. We are grateful to C. Conley at whose
seminar these results were presented and to H. McKean for discussions on
this subject. We also are indebted to P. Deift for pointing out the

relevance of the factorization of second order operators.




§2. Construction of the polynomials 6

P

In this section we construct a sequence of polynomials ek(tl,....rk)

for k = 0,1,... of k variables, which will be considered as polynomials
of one variable x = Ty the others figuring as parameters. As such they
have the degree n = % k(k + 1). They are defined recursively by

(2.1) 90 =i 91 = xX'='T

\
and the differential equation

gt .

1

s

2 *
' o -
(2.2) Ok e1%%-1 = Oke1f%-1 = (2k + Loy )

i

=

which leaves an integration constant available. We fix this constant by

is based on division properties of polynomials and properties of the Wronskian

\ (A,B] = A'B - AB' .

3
ko the lization that th £fici o i
f ‘ normalization tha e coefficient x in ek+l is equal to Tes1”
L‘m This defines the polynomials uniquely and at each recursive step one
£
; ¢ picks up a new integration constant T.
I For the first few polynomials one finds

60 =1
g | i -

3
62 = X + Ty
o 6 3 5 2

63 = X 4 5T,xT + Tax 51, ]
_ o LI0 7 5 _ 2 Sl 2 3 £
i 94 = x + 1512x + 7T3x 351213x + 17512x 3 T3+ TyX" + 1,7, . ;
% However, it is by no means obvious that the above differential equations can
f be solved within the class of polynomials. That this is the case is the
L contents of the following proposition which is purely algebraic. 1Its proof
{ |
i
E

Proposition: There exists a unique sequence of polynomials Gk(x,Tz,...,Tk)

in k variables with rational coefficients satisfying (2.1), the recursion

*
prime or D stands for g% .
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equation (2.2) and the normalization condition mentioned above.
Moreover, the symmetric expression
L] L}
(2.3) {ek'ak-l) = [ek'ek-ll + [ek_l,ekl

*
vanishes identically );{ } is defined by this relation.

The ek,e; considered as polynomials in x over the ring Q(Tz,...,rk]
of polynomials in ToreeesTy with rational coefficients have no common

n
factors. Finally, ek = x k + -+ with n, = % k(k + 1).

Proof: The above statements will be proved together by induction on k.
Assuming they have been proven for k < d we set

X = ed-l' Y = Gd .
We aim to solve the recursion equation
(2.4) (z,X] = (2d + 1)¥?

for 2. Instead we solve the equation

(2.5) (z,X] = (2 + 1)Y2 + px ,
where P is a polynomial in x of degree deg P < deg X and where the
n
coefficient of x sEs in 2 vanishes. Equation (2.5) represents a system
of 2n, + 1 linear equations for the N1 Yy coefficients of Z and
P. From n, = % k(k + 1) we derive
Nt + n._, = 2nk+ 1

and the number of equations and unknowns match. Thus the solvability of
(2.5) is assured if we show that the homogeneous system has only the trivial
solution. Therefore we consider the equation

. ]
Z X -2X =PX .
Setting 2 = cox® + s+, ¢ # 0, the highest term on the left hand side is
a+n 1l

a-1"
cla - nd_l)x

*
A similar identity also holds for N-soliton potentials ([8].

ccatbiboia,




while the right hand side has terms of order < 2n - 1 only. Hence

deg Z = a < 2ny3_y - Ny, =Ny ) -

n
By our normalization the coefficient of x a-1 in 2 vanishes, hence
deg Z < deg X = Ng_y° Moreover,
L} ]
ZX = (z - P)X

and since X, x' have no common factor X must divide 2, which is
impossible unless 2 = 0, since deg Z < deg X. But 2 = 0 implies P =0
and the solvability of (2.5) for polynomials 2,P with coefficients
rational in ToreeesTy is established.

Next we show that P = 0 in (2.5) so that 2 in fact is a solution
of (2.4). Observe that

[((z,X1,X'] = [2 ,X 1X

is divisible by X. Thus if we take the Wronskian of both sides of (2.5)
with x' we find

(2.6) % ,% 1% = (28 + 1)[¥e,x'] + [P, X | =

(2d + 1) [¥3,x' ] + (P,X 1X + PX 2 .

The crucial observation is that

L] 1] 1) "
(¥2,x'] = 2vy x' - ¥v%x

]

-{y,x}y + YY' X
with the notation of (2.3). Thus, since by induction hypothesis, {Y,X} = 0,
we conclude that [Y2,x'] is divisible by X, hence by (2.6) also lez
is divisible by X. This implies P = 0 as deg P < deg X, and since
X, x' have no common factor.

Thus we have shown that the polynomial 2 ig a solution of (2.4), and
thus its coefficient of xnd_1 is zero. 2 1is uniquely determined by c:this
requirement. So far the coefficients are known to be rational functions

of ToreesnTy and we verify now that actually they are polynomials in

TyreeesTy. For this purpose we compare coefficients in (2.4) for

P




2 =] Zaxu f
a

We find that the terms of degree a + nd_1 -1 in (2.4) are

(a - nd_l)zcl +
plus terms which are polynomials in Za+1""’z and the known coefficients

n
d+1
of Y and X. Thus we can determine Za recursively as polynomials in the

coefficients of X, Y, with rational coefficients. By induction on d we

conclude that the 2, are polynomials with rational coefficients in

TorTgreeesTye The highest coefficient is found for o = n from

d+1

(n n )Za = (24 + 1) .

a+l ~ "a-1

Since ng ., - ng , = 2d + 1 we have Za =1 for a = Ng41e Thus we have

is a polynomial with coefficients Za in the ring Q[Tz,--.,Td] of
polynomials in ToreeerTye
If we set

6 =2 + 1

a+1 a+1%a-1

then ed+l is clearly a solution of (2.2) and satisfies the desired

normalization condition.

The proof will be complete if we verify (2.3) for k =d + 1 and show

that 6d+1, ed+l have no common factors.
To do this we use the identity
2 - -
(2.7) [[9d+l,X],Y ] = XY(9d+1,Y} 8d+1Y{Y.X}
where again Y = 04, X = ed-l' By construction

i 2
I0d+1,x] = (2d + 1)Y

and the left side of (2.7) vanishes. By induction hypothesis {Y,X} = 0,
hence we conclude from (2.7) that

l,y) =0 .

{ed+

s e
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Finally we observe that 61 = X, 62 = x3 + T, satisfy the property
L}
that ek, Ok have no common factor. Our assertion is proved inductively

for

(<] =2 + 1 6 =2+ 1

a+1 a+1%a-1 X

d+l
from the following remark: If X, Xl have no common factor over Q[Tz,..
and Z 1is any other polynomial then

Z + 1X and Z' + TX'
have no common factor over Q[Tz,r3,...,1d,r]. Such a common factor would
have to be linear in T, and one readily shows that its degree in x must
be zero.

This completes the proof of the proposition.

Remark 1. The above polynomials have the homogeneity property

3 2k-1 R
ek(xrl,x 12,...,A Tk) =2 ek(Tl,...,Tk)
We say the ek are "isobaric" of degree ny if we assign Tj the weight
2j - 1.
Indeed, if we replace x, Tj’ Gk by -
* * | * n
3=, 6. =1 Ke

X = Ax, Tj = A X "

J
then one verifies that (2.1), (2.2) and the normalization condition are
preserved. Hence by uniqueness

of =6, (1"

x = k(T )
proving the remark.
Remark 2: The parameters TorTgrees were introduced by a rather arbitrary

normalization condition. One can free oneself from this arbitrariness by

replacing the Tj by
*
T = Bl € G (TsiTareseciTs o)
j o i Sl b J=1""

where gj are polynomials with rational coefficients and aj # 0 1is a

.,Td]

QE




rational number. Moreover, we require that g, be isobaric of degree j

3 . 3 . * .
which amounts to requiring that the transformation +t. » 1. commutes with

J
Tj > Azj_lrj. In fact, the above birational transformations form a group

arnd we will reserve the freedom to pick an appropriate such transformation
(see Section 5).

In the following we need another property of these polynomials.
Lemma 1: For fixed 4 > 1 1let

) =x"+ 0 xn.1 4+ oo + o

ed(x + TyrTgreeerTy 1 B

Then the oj are isobaric polynomials in TyreeeTy of degree j. Moreover

L2 s s ed

°2j—1 = ujTj i q(Tz,...,Tj_l) for 3

where aj # 0 and g is a polynomial, isobaric of degree 2j - 1.
Corollary: This lemma implies that the above relation can be solved for

TyrTpeee-sTq and Tyre-+sTq expressed as isobaric polynomials, with a non-

vanishing linear term, of Hence are in

01,03,05,..-,02d_1. Tl:Tzl---err

birational, isobaric equivalence with 01'03""'°2d—1'
Proof: It is obvious from the above proposition that the aj are isobaric

polynomials in the T,,...,T and we just have to verify that a. # 0. Of
2 J j

d
course, aj = aj(d) depends on d, and we simply compute it.
Xn-2]+1

in 6 =6 and there-

Clearly aj is the coefficient of Tj 4

fore we have

] n-2j+1 o S
T = jx for Tl E Oyveegty =0

while

0 = x" for 1 & OyeessTy=0

Hence if we differentiate (2.2) with respect to Tj' 5%— denoted by a
b

dot, by a prime we find

.
9x
] ' . .

. . . .
(9d+16d—1 - ed+led—1)+(ed+lod-l — 6d+18d_f = 2(24 + 1)9d8d .

=1~

T —




For IR PR S R 0 this gives

{(nd+1— 2j +1) -nd_l}aj(d+ 1) + {nd+1 =fng 3 =23+ 1)}01j (d-1)=2(24 + l)o‘j (@)

or since ng. ., - ng_, = 2d + 1

(d -3+ Layld+1) + (a+ Payld - 1) = (24 + Laj(d) .
This recursion formula for aj(d), together with aj(d) =1 for 4 =3
(by normalization) and aj(d) =0 for 4 > j, determines aj(d) uhiquely.
In fact one finds explicitly
_fd+ 91 - fd + 3 AR
a (d) -(d_j) -( o | # 0 for 3= 1,2,....0
which proves the lemma.

This lemma has the following consequence: The polynomials

ed(x + Tl'TZ""’Td) are uniquely determined by the choice of the TyreeesTyge
Indeed, if
ed(x + T1’T2""’Td) = ed(x + Tl’TZ""’Td)
for all x then the coefficients oj(r) = a.(;) agree, which implies by
the above lemma that Ty = ;k' This remark implies that the representation
(L.3) of wu e M4 is one to one.
Remark 3: For Ty = T3 = " =13, =0 one can easily compute ed
explicitly and finds for d > 3
n
o) d-4, _44-6 7 2d-3 2d =1 2 2d-5
8 = X {x + (24 - Dty ;% - 53 =5 Tg-1 T g } .

This formula contains as special cases those of [l], proposition 2 and 3,

Section 5.
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§3. A deformation problem for the modified Korteweg~de Vries equation.

In [5] Lax related the Korteweg-de Vries equation - as well as its

higher analogues - to the iso-spectral deformation of the operator

(3.1) L= =" 4 u
where u = u(x) is a C -function. We will describe an analogue problem
for the first order operator
(3.2) A=D-v
with v = v(x).

For motivation of the following we consider at first a bounded linear
operator A in a Hilbert space and call A equivalent to Ao if there
exist two unitary operators Ul' U2 such that

=1 =
(3.3) Ul A02 = Ao .

Clearly the invariants of this equivalence relation are the spectral
* *
invariants of A A or of AA .

We ask for deformations A(t) of Ao = A(0) which remain in the same

equivalence class. Assuming that Ul = Ul(t), 02 = U2(t) are defined

through differential equations

U. =B.U.; U.(0) = I; § =1,2
j 3957 04500 -

with skew Hermitian Bj' we obtain by differentiation of (3.3)

_l i -
Ul (A BlA + AB2)02 0
or
(3.4) A = BlA - AB, .
We apply this consideration to A =D - v, v = v(x,t) and choose
B, = D + b,b ¢ Dby
J J J

as skew Hermitian operator. We now consider (3.4) as a formal relation

for differential operators. The left hand side of (3.4) is a multiplication

operator, namely multiplication by Vi and bl’ b2 have to be so

wlDe

|
|
l
1
5




determined that in BlA - A82 the coefficients of D4, D3, Dz, D vanish.

The first two coefficients vanish automatically while the other two are

L}
-3v + Z(b1 = b2)

' '
-3v + b, - 3b, - 2(b1 - bz)v .

Setting these expressions eqgual to zero yields two linear equations for

b b with the solution

1t 2
L)

b, = - (-v + vz) + c

1

(v' + v2) + c

BlWw W

b, = -

with an arbitrary integration constant c¢. This constant reflects the
trivial solution of (4) with Bj = 2cD, Ve T M Therefore we set c = 0
and obtain from (3.4) a partial differential equation for v which is

computed to be
£3.5) v, = % v - % VSVERS

This is the so-called modified Korteweg-de Vries equation which was used
by Miura (7] in his derivation of the conservation laws for the Kd4dv

equation. For this purpose he showed that the function

L}
(3.6) u = v2 + v 3
satisfies
_1 |||_2 .
(3.7) u =3zu 5 uu' ,
if v 1is a solution of (3.5). This remarkable fact has a natural explana-

tion in the following observation:
]
If a=v + v2 then the operator (3.1) can be factored as
*

(3.8) L=AA
where

*

A =-D-v

is the formal adjoint of A. Moreover, the deformation equation (3.4)

_1 3~




&

gives rise to a deformation equation for L

. o *. * * * * 2
(3.9) L—AA+AA—'ABlA'FBzAA-FABlA"AABZ—[B2,L];

*
here we used that Bj = -Bj, Bj = Bj(v). This is precisely the deformation

problem
(3.10) L = (B,L]; B =B(u = D> + (b(u)D + Db(u))
studied by Lax [5], which leads to (3.7) and Bz(v) = B(v' + vz), provided

the arbitrary constant is normalized appropriately. This shows then that

.
TR R P S

any solutions v of (3.5) gives rise to a solution u of (3.7) via (3.6).

This appears as a consequence of the factorization (3.8).

. If instead we consider the operator

"' = L=a"=-0?4+3

: with u = -vl + vz, then cléarly we find analogously to (3.9)

; f‘= (B, ,L)

; and Bl(v) = B(u) = B(—v‘ + vz), where B(u) again denotes the third order

-~ (]
operator obtained by Lax. Moreover, u= -v +»v2 is automatically a solution of

(3.7). The duality map u - U which takes solutions of (3.7) again into
solutions of the same equation, a so-called B;cklund transformation, is
here related to the deformation of two products AA*, A*A, i.e. to
exchanging A and A*.
These considerations can be generalized to the higher Korteweg-de Vries
2 operators Xj by considering real skew Hermitian operators Bl, B of

2
degree 2j - 1. This leads to operators Bl(v), Bz(v) expressible with

L}
' polynomial coefficients in wv,v ,... (this is a difficult point) which

are of the form

Bl(V) B(—v' + v2)

B(v' + v2)

82(")

. *
5 where B = B(u) corresponds to the iso-spectral deformation of L = A A,

£
g

-14-




i.e. L = (B,L] associated with the xj-flow.

For the explicit representa-
tion of B(u) we refer to [6].

We will not present the proof of this statement since we find it easier

to introduce the xj via a recursion formula and then verify directly

their invariance under the B;cklund transformation. This will be done in
Section 5.

~15-




§4. The construction of the rational potentials.

From the factorization
L=a',=a"

one reads off that
(4.1) AL = 1A .
This identity shows that
(4.2) (L - A\)¢ =0 implies (L-A)Ap = 0
which allows us to construct the solutions of (L - A)g = 0 from those
of (L - Ay = 0.

The mapping u ~» u is an involution, i.e. u is mapped back into u.
The following is closely related to [2]. However, if one observes that

the factorization

* ' 2
L = A A; u=v + v

depends on the choice of v one can reach new potentials by repeated
application of this procedure. The various choices of Vv can be easily

described by the solutions ¢ of

= =L
Ly 0, v 5

*
Indeed with this choice of v one has L =A A for A =D - v; as well

- * -

as Ay = 0. In fact, we may write A = ¢D¢ - and hence A = -¢ 1D¢.

& - ~ ~ 7 ’

From Ay = 0 one has A ¢ L s ¢ arnd L = -02 + u, u=u-=- 2v satisfies
Tl =0
L]

Instead of using w-l and v = - %; as the basis for the factorization of
~ ~%a ~ ~~
L =A A we pick any other solution ¢ of Ly = 0. Since the Wronskian of
¢ and w-l is a constant we determine ¢ as a solution of

A
(4.3) [¢sv ) = const # 0

L] L]

where [a,b] = a b - ab denotes the Wronskian determinant. Then

v = ¢ U =u - 2v

@46'

-16-
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gives rise to a new potential us=u- 2;'. The solution of (4.3) introduces
one integration constant at this step.

This simple procedure, started with the potential u = 0 yields the
rational potentials: We set u, = o, ¥ = X and construct a sequence of

potentials u inductively as follows. We construct from

Yk
(4.4) [vk,v;ill = const # 0 for k =1,2,...

and set for k > 1

v
(4.5) e

Since this transformation which maps u, into Uil takes solution of
the KdV equations again to solutions of the KAV equations, we will
obtain in u a k-parameter family of solutions of these equations since
every step introduces one integration constant. It is surprising, that
this procedure gives rise to rational functions Uy, in fact, the most

general rational solutions of the KdV equations, aside from the trivial one

u = - %§ of (1.1). The following lemma expresses the result of this construc-
tion (4.4), (4.5) in terms of the ek.

Lemma 2: If By denotes the polynomials of §2 then the rational functions

ek "
(4.6) u, = -2 5, = -2(log 6,)
(] k = 0,1,..
g i
k 8y kK~ vy
satisfy
lvk,wk l] = 2k + 1
(4.7) (-p% + u e, = 0
: x’ ¥k
1]
2
u = Vv + v
(4.8) v
.-y, + Vo
“Red T 'k k

-17-
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Proof: For k = 0 the definition of 6 _ =

0
$o = X in agreement with our requirement.

i e i e

1, 61 = X

The recursion formula (2.2)

leads to u, = 0,

leads to
2y Oe1  %pe
[V’k,Wk_ll = e 2k + 1 .
" X
The definition of uy . vk yield
. . L ] 2
Oy Oy Oy
e sl Tl g R
X K X
L1 " L 1] ] L]
o S T (°k+1 ek)
¥ Y% Y O %1 B
so that
n e. " L] L]
SRR T e L L e T
Ve TR TR TS % kil % B
which vanishes by (2.3).
The identity
1] 1 L1} L] 2
k ! Py Yk k k

proves one of the last relations. Finally

gy = -2(log(6kwk)) =

L} L)
=, ~ 2v, = = vy *

proving the lemma.
We summarize: The relations (4.8) show

u by the Backlund transformation of § 3 wh

potentials in terms of the polynomials B
Ly = (-02 + u )y
k k
0
has one solution ¢ = oy = g+l.
k

-18-

9k+1 = ekvk implies
L] L]
")
-3
Yk
2

Yk

that U,y is obtained from
ile (4.6) expresses these

The equation (4.7) implies that

The Wronskian relation shows that




RS

-—

T

T —

—rr

1 o %5

k

*=v 8 is another solution. Thus the most general solution is
given by
= -1
¢ = (clek_l + C29k+l)ek :
It is interesting to note that also the solutions of the equation
(Lk - Ny =0
twx

are the product of rational functions in x and e r A= -wz. Indeed

by (4.2) we see: If Y solves the above equation then

L]
~ x
v = (D - Vk)w = (D - ;;)w = ALY
is a solution of (Lk+l - XNy =0. For k=0 we have ¢ = c,e +

hence

- +wx
Y = Ak...AzAl(e )

is a basis for (L 0. This is essentially contained in (2], in a

kel 1Y

different guise.

As the special example we mention the case Ty & o B wsx omR, = 0,
) ny, an
i.e. ek(x) = x or u, = :;Tu The equation
Dzw + (A i 51&_%.&1 V=0
X

has the solutions ¢y = /X J*(k+1)(imx) with the Bessel functions Jy which
i3 2

for integer v - % are indeed elementary functions of the indicated nature.

-19-




§5. The KdV-flows.

Following Lenard we define the KAV vector fields X and the

k
Hamiltonian Hk
6Hk
(5.1) Xk(u) =D W
recursively by x1 = Dy  ©OF Xl(u) = u', and
§H
L - 153 k21 o
(5.2) xk = (uD + Du 5 D7) su ki = 1,20 s
or formally
¥ o U 4
(5.3) X, = (u + DuD 2 DX, | = RX
where
(5.4) R=u+Du ! - % pe
This definition requires the verification that at each step Xk_1 can be
§H
k-1

written as the derivative of

R which is expressed as a polynomial

in u and finitely many of its derivatives. For the proof of this fact,
see e.g. [3], [6]. Also Xk is defined up to an arbitrary constant which
is normalized by the requirement that Xk(u) is an "isobaric" polynomial in

v,u ,u ,... of degree 2k + 1, which means that every term

uao(Du)al(Dzu)uz o

in Xk(u) satisfies §0 (2 + v)cxv = 2k + 1; i.e. u 1is assigned the weight
2 and each dcrivatizg the weight 1. (This weighting is consistent with

the fact that in L = -—D2 + u multiplication with u and D2 are on the
same footing.)

For k = 2, for example, we find
xz(u) = (uD + Du - % D3)u = 3uu' = % u..' '
.

which agrees with (3.7) up to an unessential factor -2.
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Similarly we introduce a sequence of vector fields - Yk(v) with

—EYZ(V) corresponding to (3.5). The requirement is that every solution of
L}

Ny = Yk(v) gives rise, via u =v + vz, to a solution of u, = xk(u).

This requirement leads to the following recursive definition:

Let S be the formal operator introduced by Olver in [10], namely

(5.5) S = 2v2 + 2v'D-lv - % D2
and set

Yl(v) = v'
(5.6)

Yk(v) = SYk-l(v) for k = 1,2,

Again it is important to show that Yk(v) can be defined as polynomials in
v,v',..., which we will do presently. Secondly, the definition is made
unique by requiring that Yk(v) are isobaric polynomials of degree 2k if v
and 5% are assigned the weight 1 each. For example, for Yz(v) we find
Vi

- Al 1]
Yz(v) = (2v2 +2v D 1v - % Dz)v = 3v2v - % v

which agrees with (3.5) up to the factor -2.
Lemma 3: i) The Yk(v) are uniquely defined as isobaric polynomials of

degree 2k by the recursion formula (5.6) and ii) satisfy

(5.7) (2v + D)Yk(v) = xk(v2 + v )
Moreover
Yk(—v) = -Yk(v).
Proof: We proceed by induction. For k=1 the above statement is evident.
We assume it holds for k and verify it for k+ 1. First it is to be shown that
5 2 L S
SYk = (2v° + 2v D v 5 D )Yk(v)

can be defined as an isobaric polynomial in v and its derivatives. For

this it is sufficient to verify this for D—l(va(v)) or for

12y + D)Y, (v) = ZD_l(va) Y (V).

=3 ]=
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But by the induction hypothesis (see (5.7)) we have

§H, (u)
(2v + D)Yk = Xk(u) =D T
L}
with u=v + vz, and therefore
S§H
-1 = k
D “(2v + D)Yk = T

]
is indeed a polynomial in u = v + v2 and its derivatives. Of course,

one could add an arbitrary constant to D_1(2v + D)Yk but the choice is

unique by requiring that D_1(2v + D)Yk(v) be isobaric of degree 2k in

SH
L] 1
V,Vv ,... . Note that 15? is isobaric of degree 2k in u,u ,... when
u = v' + v2, and by induction it follows that
§H
_ “ 205 NG ) 2 k
Yk+l = SYk = (2v v 5 D )Yk(v) + v 7

L]
is isobaric of degree 2k + 2 in v,v ,...

To prove (5.7) we observe the intertwining identity

R(2v + D) = (2v + D)S
for S which is readily verified. It implies
(2v + D)Yk+1(v) = (2v + D)S Yk(v) = R(2v + D)Yk(v)
2 s 2 o J 2)
= RXk(v + v7) = Xk+l(v + v 7
where the isobaric character of the Xk’ Yk is used implicitly to

fix the integration constants. This completes the induction.

Thus the polynomials Yk(v) (k >1) in wv,v ,v ,... are uniquely

defined. Moreover, they are odd in v, i.e. satisfy
Yk(-v) = _Yk(V)

Indeed this follows immediately from the recursion (5.6) since S 1is even

L]
in v and Yl(v) = v is odd, which completes the lemma.

Next we show that Xk leaves the manifold - -2(log Gd) invariant.

This is the contents of




Theorem 1: There exists a unique choice of rational functions ykj(rz,...,ij)
and differential operators
bt d
I = z Y, 2
k ¢ kj 9T.
o ML
such that for 4 = 0,1,2,...
(5.8) Xk(ud) = rkud
and
0. 0.
d+1 d
(5.9) Y. (v3i) = Tov where v, = - — .
k''d k'd d Od+1 ed
(Since ugs Vg depend only on finitely many variables the sum breaks off.)
In other words, if the Tj satisfy
Tj = ij(TZ""'Tj) j <d
then u = ud(x + Tl,Tz,...,Td) solves the equation
Ju
Y (u)
atk k
Proof: We proceed by induction on d. For d = 0 we have uy = 0 and
therefore Xk(uO) = 0. Assume next that ij =ij(T2,...,Tj) Fors =Rl P s a
have been determined such that (5.8) holds. Then we conclude from (5.7) and
'
0.
. 2 L2y _ Yd+d
ud—Vd+Vd with Vd—a,v’d—-é:i—— that

(2vd + D)Yk(vd) = Xk(ud) = Fk d\= (2vd + D)Fkvd
or

(2vd + D)(Yk(vd) - Tkvd) =0

Since ¢ = ¢;2 is a solution of (2v4 + D)y = 0 we conclude that

e -2
(5.10) Yk(vd) - Fkvd = Cvq
with c¢ being a rational function of ToreeerTgure On the other hand V3
depends on Tasl and in
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Z avd 3vd
(5.11) Fov, = Yo =— + Y —_—
k' d jﬁd kj Brj k,d+1 aTd+l
the coefficient Ye. g+1 Can be uniquely determined so that c = 0. Indeed,
’
L] L) e.
v de
_'a _ gl _Ta dins = : d+1 _
L Rl R ) where ed is independent of 1 = T3+l whllg .
d d+1 d
Hence, by (2.2)
v o, 1 g%
= (ed 1) =-a+1) % = -(2a+ 1)\pd2
d+1 ) d+1 9d+1
and the coefficient of Y in (5.10) $s  =(2d + L)v3%; +thus we have
k,d+1 d
from (5.10)
2 X v
vy, (v,) Yo: ==—1}= =-(+2d + 1)y + c .
d>k'd j<a kj arj k,d+1
By appropriate choice of Yk g+1' as rational function of Tyse=erTgeys
we obtain ¢ =0, i.e.
Yk(vd) = Fkvd
as claimed (5.9). This determines Yk,d+1 = Yk,d+1(T2""'Td+1) uniquely.
Using that Yk(—v) = —Yk(v) we conclude from (5.7)
' 2 -
xk(ud+l) = xk(—vd + vd) = (—2vd + D)Yk(-vd)
(2vd = D)Yk(vd)
= (2vd - D)Tkvd
=T 2E i
= Tglvg = vgb = Ty
which completes the induction and the proof.

Lemma 4: The ij = ij(r) are polynomials of ToyrTgress with rational
coefficients. If we assign T the weight 2m - 1 the ij are isobaric
of weight 2(j - k). 1In particular, they depend on 1 with

£ < [j -k] <j-1 only. Moreover,

L

is a non-vanishing constant.

Ykk




o

i
i
]
|
!
X

4

Proof: First we express the differential equation O, - Xk(u) via

u = -2(log 6) in terms of

” = n-1 <es
6 = Sd = X + olx + + .

with n = ni- This expresses the differential equation in terms of the 9
which finally are transferred to the Tj via the corollary of lemma 1 of

Section 2.

From

ol D(gl) =u =X (u =D %;}

we conclude that

_2(ée' y éle) e

o
Tu

N =

an integration constant being eliminated by the isobaric property. The

Ll
right hand side depends on wu,u ,..., and we observe that

- o L)
pMu = ™™ 2Pm(6,6 )

§H
with Pm being a polynomial in 8,0',... . Since 75% is isobaric of
degree 2k we find that
S§H
2k 1 Jees, .
0 —Z'W—Q(O,e I o))

1
is a polynomial in 6,6 ,... . Thus the differential equation takes the form

g7 280 = 8 8 = Qa8 rovid

In this equation we compare coefficients of x. The term of highest

power in x containing oj is
x(2k-2)nxn—jxn—l(n = (o= 158, = x2kn_j_1j6,
J J
i.e. comparing the coefficients of x2¥""J3-1 o fing
J&j = mzj amém + ay

where al,az,...,aj are polynomials in the o. Thus we find

-25-




°j = bj(ol,...,od)

with polynomials bj' Finally using the corollary of lemma 1 we express

these differential equations in terms of TyeTorees in the form

Tj = ij(Tl'TZ"") .
One readily checks the homogeneity of the ij to be given by

3 _ y2j-2k
ykj(ATl,A 12,...) = A ij '

by using an argument like in Remark 1, Section 2, observing the isobaric

b property of xk. In particular, ij =0 for j < k and Yk is a constant.

]
To evaluate this constant we use the fact that
Y 2n

: - _4d = T < L
4 Uy = —3% for Ty = T3 = i g 0
x :
and for d = k |
L -(2k+1)
Xkuk = ckx
; with a rational constant Cp # 0 as one computes from (5.3). Thus we have
H ! for Ty = Tg o Meels Bps 0
; ” k 9du Ju
k k
1 0#Xu =Tu = ] — vy .==—7Y 5
k 'k k'k §=1 arj kj a1k kk

as ij =0 for 3Jj < k. Hence Yk # 0 as was claimed.

b Thus the differential equations induced by xk are given by Iyr or

equivalently by

i': Tj = ij(72:T3l~-~'Tj_l) v

with isobaric polynomials ij. Obviously the equations can be solved recur-

) sively as polynomials in t. In fact, more is true: There exists an isobaric
*
birational transformation T_"Tj such that for all k > 1 we have
3 =

9
I‘k

9T

*
k

=26~
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X
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i.e. the above differential equation reduces to

*

rkrj = ij
*
and Tk can be interpreted as the time variable for the flow Xk. This is
a simple consequence of the fact that the X, - and hence the T, - commute.

k k
We recall that the 1, were introduced by an artificial normalization and

these parameters are actually defined only up to the group of birational

transformations which commute with Tj + Azj_lrj Now we make the unique chc

of the parameters so that they are adapted to the Kdv flows.

Theorem 2: There exists a unique birational transformation

*
R A gj(12,13,...,1.

)
J J i j-1

with gj being isobaric polynomials

gj(A3T A573,...,A23‘3rj_1) - Azj_lgj(Tz,...,x. )

2’ j=1

with rational coefficients and a rational number aj # 0 such that

]
| =
J 9T..
J
*
Corollary: If u = ud(Tl,Tz,...,Td) is expressed in terms of 1 as

* * *
u = ud(Tl,...,Td) then the function

* * * *
u = ud(T1 A x,Tz,...,Id)
is a solution of mﬂ = X u.
ark

Proof: We proceed by induction as follows: Changing the notation of the

*
Tj also we assume that for some k > 1 we have

L. & o i A TR
J 3 LA

= Y a
k kk Ty

up to terms 31 for m > k, which will be suppressed. For k = 1 this
m

* : a
We abbreviate 5% by 3.

-
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1s trivially the case and we will construct a transformation

®*
T. = T, ) # k
j j (J )
(5.12)
*
Te = 8, T, + gk(TZ""’Tk-l)
such that
', = 3_+« + 0:3_«
3j Tj T
' = 3 _»
k Tk

up to terms BT* with m > k. This is obviously sufficient for the proof, if
m

we also verify that the 9y and a have the required properties.

k
To carry out this induction step it is convenient to break up (5.12)

into k steps and effectively make a second induction. First we achieve

= ; ot

by Tk = a T, that Fk = YkkakaT; = 81; by setting ap = Yy
a rational number. Assume now that we already achieved

Y5k =0 for s < J < k
Then for s < j < k, using the commuting of the Xk, hence Fk, we compute

3y
CER A R as"aT
Jj s ) 5 k

hence depends on TorTgeeeerTg only. Therefore we construct a

Ysk
transformation

T ™ T + 9(12,...,T )

so that

3
r=a*+(JL+y Bo#
s Ts BTS sk Tk

while Fm, l <m< s -1, maintains its inductively assumed form.
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T

Thus, if we determine the polynomial g such that

9
5{2 + Yeic ™ 0

then we have effectively replaced L by 0. The choice of g 1is unique

if we require it to be isobaric. After finitely many steps we achieve

Fj=3'[_*' lijik,
1)
up to terms BT with m > k. This completes the induction argument. The
m
isobaric character of the gj follows readily from that of the ij.

This completes the proof of Theorem 2.
In conclusion we remark that the manifold Md of ratiomnal function
"
uy = -2(log Gd) agrees with the manifold considered in [1]). Therefore

the roots xl,xz,...,xn, n = N4 of Bd:

n
Oa= I = x.)
d j=1 J
i.e. the poles of

n -2
ug = 2 Y o(x - x.)
j=i 7

satisfy, by the derivations in [1] the algebraic equations (1.4). This

fact could also be verified directly.
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§6. Explicit representations for the ed.

If one makes use of Crum's formulae (see [2]) one can represent the
polynomials ed as well as the transformation Ag_1Bg-2 -+ Ay of §4 in
terms of Wronskians in explicit form. In order to do this we define the

Wronskian of k functions wl,wz,...,wk as
We = WY obpoeeeaty) = det(Dl“le) G A 15 IS
For abbreviation we also set
wk(x) = w('l'llwz,---lwkl)()

with another smooth function X. Then one has Jacobi's identity

(6.1) (W, (x),W (x)wk for k = 1,2,...

k+1! = ka1
This is readily verified. The left hand side is a linear differential
operator of order k + 1 in x which clearly vanishes for x = wl,wz,...,wk

as well as for x = wk+l' Thus, if we assume that the are

Vye¥gre ety
linearly independent, the left hand side must be a multiple of Wk+1(x).
Comparing the highest coefficient one obtains (6.1).

We apply the above definitions to a system wj satisfying wo = 0,
wl = x and

(6.2) wj = wj-l' J = 1,2,0004k .

Then one verifies, for x =1 and setting w0 = 1 that
= (-nk @

(6.3) W (1) = (-1)"w, _, for k =1,2,... .

To prove this we write
” = (-1 kK
Wk(l) = W(wl.wz,...,wk.l) = (-1) w(l,wl,...,wk)

and since wl = x the last expression reduces to

_ I k L L Ll
Wk(l) = (=1) Wbyi¥geeeer¥y)

and by (6.2) to (6.3).

-30-




et

v

T

Thus setting x =1 in (6.1) and using (6.3) we find

(6.4) [Wk+1,Wk-1] = Wk for k = 1,2,...

and

Wo =1, W =y .

Thus if we set ¥, = x we see that ek and Wy differ only by a
multiplicative factor:

(6.5) 9. =
where one determines

k-2

X :
=1 « 3 <8 sen (3% = 23t = T[T 2% - 25 + 133 ,
j=1

But this factor is unessential for the following. The choice b, = x and
(6.2) leads to
x2)-1 j-2 : 2i

i m x
(6.6) ¥y = BTt i=20 Pj-i T21)1

Equivalently one can define the wj by the genzrating function

1 sz "~ = gin hisx) + ( ] piszi-l)cos h (sx)
=1 i=2

where PprPgyr... are arbitrary parameters.

With this choice of wl'wz"" the formula (6.5) gives the desired
explicit representation of Bk. The PpsPgs-.. are birationally and
isobarically related to the 12,13,... and one finds for the first few

values T, = —392, 13 = 4503; uo iy = ) 148 My 3, My = 45.
Now we express the mapping Td = Ad—lAd-Z e Ao with
-1 %501 _ Y501
(6.7) B, = o, Do, s ¢, » «did @ dI2
J o J ej Wy
in terms of the Wronskians.
-3]=




Lemma 5: The map

X ¥ TgX = Bg_jAq o v+ AX

has the alternate form

Td = for d=1;2;... .

Proof: This formula occurs in [2]. Clearly for d = 1 it is easily verified

and it suffices to check

-
: Wy (x) i Wip () 1
g wd wd+1
Indeed
Wy Wy Wglay Wa(X) /W3,y
A W = vaPlig W Ty 2 ’
d d+1 d W

d+1

and using (6.4), (6.7) the induction step is verified.

In order to interpret the spectral properties of the operator
L = Ld = —02 + Ugr Yg = -2(log Gd)", we choose the parameters so that the
roots of Od' i.e. the poles of uy lie of f the real axis, which requires
complex potentials. The spectral problem, as well as the inverse problem
for such complex potentials were studied by Maréenko [13]. We are indebted
to Marcenko for the following interpretation.

First it is clear on account of

LTd = Td(-Dz)

that for X = -w2 that the solutions of (L - X))y =0 are linear

combinations of

twx
T Wd(c ) ) C!quR (%)
i Wy +
with rational R, (x). Thus A > 0 gives continuous spectrum with reflection
coefficient zero. One finds [y ,v_] = g,
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Secondly X = 0 has an eigenspace of L of dimension > [ > in
+

& o

the Hilbert space of the absolutely square integrable functions if N 24 [

In fact, from the intertwining relation

2, _
Tq(-D%) = LyT,4

2 x2v x2v—2
and D 50T = v =070 one finds that the rational functions
2v

b x2v E 1 wd(x ) ]

v al (2v)! (2v)! Wy &
satisfy

B * Boqg =0 .
We remark that Td(xzj_l) are linearly dependent on ¢0,¢1,...,¢v but the
ov are linearly independent, as
o, ~ cvxz"'-d for |x]| ki with c # 0 .
Thus the ¢v € Lz if 0 < v < % and A = 0 1is an eiganvalue of higher
multiplicity. All this requires, of course, that the parameters TyreeerTg
so chosen that no root of ed is real.
These considerations allow the full discussion of the spectral properties

of these potentials. -
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